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The motion of a gas w:ith strong diverging shock waves, generated by supplying energy to the gas in accordance with a power 
law, and with converging shock waves in the cases of spherical and cylindrical symmetry is investigated. It is suggested that the 
intense heat exchange ensures that the temperature is the same over the whole volume of the moving gas and equal to the 
temperature of the parz.icles directly behind the shock wave, on which the laws of conservation of mass, momentum and energy 
are satisfied. © 1997 Elsevier Science Ltd. All fights reserved. 

The adiabatic motion of a perfect gas with strong cylindrical and spherical converging shock waves has 
been investigated in [1-3]. In particular, it was established in [3] that for values of the adiabatic index 
7 E (1; 1.87), a solution of the self-similar problem with a spherical shock wave exists and is unique. 
When 1' > 1.87 the uniqueness breaks down. The motion of a gas with a diverging shock wave has been 
investigated in detail. In particular, a solution of the problem of a high-power point explosion when 
there is intense heat exchange behind the shock wave is given in [4, 5]. 

Unlike [4, 5], in this paper we assume that all the conservation laws are satisfied on the shock wave, 
and under these conditions we investigate the effect of homothermal conditions on the flow parameters 
and the characteristics of the motion of converging shock waves and also diverging shock waves, 
generated by supplying heat to the gas in accordance with a power law. 

1. T H E  P R O B L E M  O F  A C O N V E R G I N G  S H O C K  W A V E  I N  A P E R F E C T  
G A S  W H E N  T H E R E  IS  I N T E N S E  H E A T  E X C H A N G E  

We will consider the problem of the propagation of converging spherical and cylindrical shock waves 
in a perfect gas in ~:he ease of homothermal flow. 

Idealizing the actual process, we will assume that energy is supplied to an unbounded volume of gas 
at infinity, as a result of which a strong shock wave is formed (we will neglect the back pressure); we 
will denote the required dependence of the radius of this shock wave on the time t by R(t). We will 
assume that the sh,ack wave propagates in a stationary gas with constant initial density P0; behind the 
shock wave the gas flow is continuous and homogeneous. 

Since the flow is homothermal the gas temperature T behind the shock wave depends only on time. 
This model describes a gas with infinitely high thermal conductivity so that the temperature in the 
medium becomes equalized after a negligibly short time. The velocity of motion of the gas has only a 
radial component tt and it, like the pressure p and the density p, depends only on time and the radial 
coordinate r in a spherical system of coordinates (or, respectively, a cylindrical system of coordinates). 

In addition we will assume that the shock wave reaches a centre of symmetry at the instant t = 0, i.e. 
instants of time t < 0 correspond to the motion of the gas before it is focused. 

Hence, the required functions p(r, t), u(r, t), T(t) andp(r,  t) in the region {(r, t): t < 0; r > R(t)} are 
described by the following system of equations 

Dp + Du ( V -  l ) pu  D T  = 0 
 tP+ua--fr PTrr + r =0, ar 

Du Du RoT Dp 
-~-t+U-~r + P --=0,Dr p=pRoT 

(1.1) 
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where R0 is the gas constant, and v is the dimension of space (v = 3 for spherical shock waves and 
v = 2 for cylindrical shock waves). The relations at the pressure jump have the form 

2 D(t), p (R( t ) , t )=T+l  2(),-1) u(R(t) , t)= ~,+1 ~'-1P0, T(t)= ( , /+I)2R ° D2(t) (1.2) 

where D(t) =/~(t) is the velocity of the shock wave and "t > 1 is the Poisson adiabatic index. 
The problem is self-similar in this formulation [6], and its solution can naturally be sought in the 

form 

R(t) = c(-t) n, n > 0; u(r, t) = ~2D(t)f(~) 
(1.3) 

p(r, t) = Pog(~), T ( t ) =  02 D2 (t)/Ro; ~ = r / ( ~ 2  R(t)) 

with unknown self-similarity factor n; c and 02 are unknown positive constants. Substituting (1.3) into 
(1.1) we obtain the following system of equations 

f'=g'(~--f)-(v-l)~, g--=f'(~-f)+(l-l)f, p=pog(~)O2D2(t) (1.4) 
g g 

where ~ e (~; *~), ~ = 1/~/(02) > 0. In the new variables, the relations on the shock wave (where ~ = 
~) take the form 

f(~o) = ~--'~_ 1 =fo, g(~o) = T -l'~'+--'~l 0 2 = (T+l)22(T-l) (1.5) 

It can be seen that it is sufficient to determine the value of n and the function f, which are in the 
half-space [~; **), by solving the Cauchy problem 

f, = f[(~ - f)~(I / n - I) -(v - I)] 
~[i_(~_ f)2 ] =F(~,f,n), f(~0) = f0 (1.6) 

The function g is then defined by the formula 

"t + /(x)dx (1.7) g(~) = V + 1 exp - f2 ~) + ~ (~ )  _ V - 1 n '~  
V--I 

which solves the problem apart from a positive constant c, the value of which depends on the method 
by which the energy is introduced. 

Hence, the problem in question reduces to determining the parameter n and the solution of problem 
(1.6) for this value of the parameter. Here there are additional conditions imposed on the required 
solution f, defined in the half-space [~; ,~): 

1. since, at the instant when focusing occurs, the velocity of motion behind the shock wave must be 
finite, we have ~l/n-lf(~) ~ 0 as ~ ---) ~, where C is a certain constant; 

2. since, at any fixed instant of time t < 0, the modulus of the velocity of the gas particles should not 
increase with distance from the shock wave, by virtue of (1.3) we have dlfl/d~ <~ 0 when ~ e (~o; .o). 

We will show that when ~ e '  (1; 3) these additional conditions uniquely define the values of the 
parameter n and, consequently, all the characteristics of the motion considered; when ~ >> 3 the self- 
similar parameter n can take any values in the interval (0; (~ + 1)/(~ + 1 + 2(v - 1))]. 

For an arbitrary value of the self-similar parameter n > 0 and for v = 2, 3, we will consider the integral 
curve of Eq. (1.6) emerging from the point (~ ,  f0) = ((~ + 1)/~/(2(~ ' - 1)), x/(2/(q:- 1))) and we will 
determine the values of the parameter n for which, corresponding to the values ~/> ~ ,  part of this 
integral curve is a graph of the functionf = f(g) defined on the semiaxis ~ I> ~ and satisfying conditions 
1 and2.  

Since for all values of the parameters the coordinates of the initial point (~,  f0) satisfy the 
inequalities ~ > 1,f0 > 0, and the ray f  = 0, ~ > 1 is an integral curve on which there are no singular 
points, the integral curve of interest to us when ~ i> ~ lies in the quarter {~/> ~ , f ~ >  0} of the phase 
plane. 
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Fig. 1. 

Note that in thi~ quarter there is a singular point only when ~-~o/(v - 1 + ~ )  ~< n < 1 and it is unique 
when 1 < n ~< ~0/(~ - (v - 1)) we will denote it byA. In the first case it is a saddle and has coordinates 
(n(v - 1)/(1 - n ) ,  (nv - 1)/(1 - n ) )  (it lies on the straight l i ne r  = ~ -  1 and its coordinates are a mono- 
tonically increasing function of n). 

An integral cur~,e which satisfies these conditions does not exist for n />  1. 

In fact, in this sitttation the fight-hand side of Eq. (1.6) is positive for all 0 < f < ~ - 1. By virtue of condition 
1, for sufficiently lau:ge values of ~, the required integral curve must lie below the straight line f = ~ - 1, and, 
consequently, we caJanot havef(~) > 0 on it, which contradicts condition 2. 

We will now cortsider the case when n e (0; 1). In this situation the right-hand side F of Eq. (1.6) is 
negative at points in the first quarter, which lies to the right of the straight l i n e r  = ~ - 1 = fl(~) and 
of  the c u r ve f  = ~ -  (v - 1)/(g(1/n - 1)) = h(~) (on this curve the vector field given by Eq. (1.6) is hori- 
zontal). Between these lines F(g, f ,  n) > 0 and, by virtue of  condition 2, the integral curve of interest 
to us cannot lie in this zone. To the left of these lines and to the right of the straight line f = ~ + 1 = 
f2(~) the sign of the right-hand side of (1.6) is again negative (Fig. 1). We can also obtain from (1.6) 
that along any integral curve in the region 0 < f < min {~ - 1; h(~)} f(~) - C~ ('-1)/" as ~ ~ 00 with a 
certain positive constant C, f(~) satisfies condition 1. 

The initial point (~-~0, f0) lies on the curve ~ = f + 1/f, and when 1 < y < 3 it lies above the straight 
l i ne r  = ~ - 1, when y > 3 it lies below this straight line, and when y = 3 it is the point at which they 
intersect. 

Suppose 1 < y <: 3. Then the integral curve of interest to us must obviously pass through the singular 
point. Consequently, n e [~-,o/(V - 1 + ~0); 1), the singular point is a saddle, and the integral curve 
considered is a separatrice. 

For any fixed y (- (1; 3) and v = 2; 3 there is also a unique value of n (for which the integral curve 
(1.6), emerging from the point (~.~ f0), is the separatrice of  the saddle A considered, the coordinates 
of which we will denote by (~(n) , fA(n) ) .  Note that since the coordinatefA(n) must not be greater than 
f0, it makes sense to consider only the following values of the parameter  n 

~9 ~ n ~  f0 +1 =n2 (n I < n  2) (1.8) 
nl v _ l + ~ o  v + f 0  

We will first prove that the required value of the parameter n is unique. We will assume that two different values 
of n, no and n.o, exist (we assume that n° > n..), for which the separatrice of the saddle A with a negative angle 
of inclination of the tangent emerges from a single point (~,f0)- We will consider the set of points of intersection 
of these separatrices (for n = no and for n = n..); they all, obviously, lie in the triangle A = {~ - 1 < f <~ f0, ~ ~> 
~}. We will denote the point of intersection which has the greatest abscissa by (~.,fo). It can be shown that such 
a point exists. 

Since ~(n . )  > ~(n. .) ,  a comparison of the angular coefficients of the slope of the tangents at the point (~.,f.) 
to these separatrices gives the inequality F(~.,f., n.) >~ F(~.,f., n..), which contradicts the fact that ~F/~n < 0 in 
the whole of the triangle A, and hence at the point (~.,f.). The contradiction obtained proves that the required 
value of n is unique. 
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Note that we have in fact proved a somewhat stronger assertion: the separatrices of the saddle A with negative 
angle of inclination of the tangent corresponding to different values of the parameter n ~ [nil n2] cannot intersect 
in the strip g > f > ~ - 1. 

We will now prove that the required value of n exists. 
We will assume that no value of n exists for which the integral curve of Eq. (1.6), passing through the point (~0, 

f0), is a separatrice of the saddle A with negative slope of the tangent. Then, for any value of n which satisfies 
inequalities (1.8), the integral curve emerging from the point (~0,f0) when ~ > ~ either passes above the separatrice 
of the saddle considered (the set of values of these n will be denoted by N÷), or below it (n ~ N_); [nl; n2] C {N+ 
U N_} and N+ f3 N_ = O. Since when n = nl we have ~(nl)  = ~o, afA(nl) <f0 = f(~),  then nl ~ N+. For n = n2 
we have ~(n2) > ~ whilefA(n2) = .to = f(~);  hence n2 ~ N_. Consequently, the sets N+ and N_ are not empty. 

By virtue of the fact that the right-hand side of (1.6) depends continuously on n it can be shown that if a certain 
value of n belongs to the set N+, a certain neighbourhood of this value exists which also belongs to the set considered; 
similarly any n ~ N_ belongs to the set N_ together with some of its neighbourhood. Hence, we obtain that the 
interval [nil n2] is covered by two non-empty open non-intersecting sets, which is impossible. Thus, we have proved 
that the required value of n exists. 

I f v  = 3, then when 0 < n < 2/(v + 1) the point (~-~0,f0) lies on the straight l i n e f  = ~ - 1 above the 
point A and the branch of the integral curve, which lies in the region 0 < f < ~ - 1, is the required 
integral curve. When n = 2/(v + 1) the point (~,f0) coincides with the pointA. The function, the graph 
of which contains the separatrice which passes through the region 0 < f < ~ - 1 is the required 
relationshipf.  When n E (2/(v + 1); 1) the function f(~) along the integral curve emerging from the 
point (~0, f0), as can easily be seen, does not satisfy condition 2. 

Suppose now that V > 3. Then ifn ~ (0; (V + 1)/(7 + 1 + 2(v - 1))], the point (~0,f0) lies in the region 
where 0 < f ~< h(~), and the integral curve emerging from it obviously satisfies the required conditions. 
If (V + 1)/(7 + 1 + 2(v - 1)) < n < 1, the point (~o, f0) falls in the region f > h(~) and condition 2 is 
not satisfied. 

Thus we have proved that for any values of 1 < V < 3 and v = 2; 3, a self-similar solution of the 
problem which satisfies the imposed limitations exists and is unique. It can be shown that when V increases 
the value of the required self-similar parameter decreases. 

For certain 7 the values of n can be determined numerically. The results of a calculation are shown 
in Table 1. For comparison we give in parentheses the self-similarity factors in the case of adiabatic gas 
flow [7]. When 7 ~> 3 the problem has an infinite set of self-similar solutions. Note that in the case of 
adiabatic flow with spherical symmetry [3] the "threshold" value of 7, after which the uniqueness breaks 
down, is equal to 1.87. 

Note that by virtue of the limitations imposed, all possible values of n are less than unity, and the 
functions f(~) corresponding to them satisfy the condition 

f ( ~ )  - C~ -(I-")," as ~ ~ oo (1.9) 

with a certain positive constant C. Then, using (1.3), we obtain that at any fixed instant of time t ~ 0 in 
the region of gas flow behind the shock wave, the velocity modulus tends to zero as r ~ oo proportional 
to r -O-n)lm. 

The function g(~) (from (1.4)) satisfies the equation 

g_' = f[(l / n - l)~- (v - t)(~ - f)l 

g ~[1 _ ( ~ _  f )21  (1.10) 

Using the properties of the functionsf(~), we can obtain that when 1 < Y < 3 the function g(~) is a 
monotonically increasing function in the interval [~; oo). In this case, at any fixed instant of time in the 
region of gas flow behind the shock wave, the density and, of course, the pressure, are increasing 
functions. When 7 ~> 3, when n E (0; l/v], at any fixed instant of time the density and the pressure are 

Table 1 

v=2 v=3 
5/3 0.722 (0.816) 0.559 (0.688) 
1,4 0.753 (0.835) 0.597 (0.717) 
1 "2 0.797 (0.86 I) 0,656 (0,757) 

Table2 

5/3 5.9 7.3 (9.55) 
1.4 10,2 13.5 (20,1) 
1,2 23.2 35.2 

y v=2 I V=3 
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monotonically decreasing functions of the coordinate r;, when n ~ [(7 + 1)/(v(7- 1) + 2); (7 + 1)/(7 + 
1 + 2(v - 1))] they are monotonically increasing functions of the spatial coordinate; when n e (l/v; 
(7 + 1)/(v(7- 1) + 2)) the characteristics considered first decrease and then increase as r increases. 

Graphs of u(r, t)/D(t) (the continuous curves) and p(r, t)/(poD2(t)) (the dashed curves) as a function 
of R(t)/r at a fixed instant of time in the case of flow with spherical symmetry are shown in Fig. 2 for 
certain values of 7- 

To determine the behaviour ofg(~) as ~ ~ oo, using (1.9) and (1.10) we obtain the equation 

--g' = fnl-" )~. -k~ - (v - I) 
g 

It can be seen that g(~) -o g. ~> 0 as ~ -o oo. 
• ,.~v 

At the instant when focusing occurs, when t = 0, the following pattern is observed: R(I) = O, and 
consequently, from (1.3) when r > 0, we have ~ = ~; u(r, 0) = Cr -~1-~)/", where C is a certain 
constant and p(r, 0) .= p~,. The values of the ratio. P,~/.P0 are shown in Table 2 for certain values, of 7. 
In parentheses we gwe the values of p,w/p0 for adiabatic gas flow [8]. It can be seen that, m the case 
considered, the medium is compressed less than in the adiabatic process. 

The condition at the discontinuity is satisfied at the centre of the symmetry. By virtue of the fact that 
only values of n < 1 are possible, we have D(0) = ~. Then, from (1.2) we have u(0, 0) = ~ and 
T(0) = ~. Consequently, at the instant when focusing occurs the pressure in the space is infinite due 
to the infinitely large increase in temperature. Focusing of the converging shock wave, taking into account 
radiant heat exchange, was considered qualitatively in [9], where it was found that the cumulation of 
energy at the instant when focusing occurs is unlimited due to the infinitely large increase in the density, 
while the temperature remains finite in this case. 

We can solve this problem using the Chester-Chisnell-Whitham approximate method [7]. Using this, 
for the homothermal gas motion behind a shock wave of infinitely high intensity in a channel with a 
variable cross-sectional areaA(r), we can obtain an equation for the shock-wave velocity 

k(7) d D l d A  ~ 2 _  
+ - - ~ = 0 ,  k ( 7 ) = l +  

D dr A dr 7 1 

Hence it follows that D = CA -1/k(+), where C is a constant. 
We will apply the result obtained to converging spherical and cylindrical shock waves, takingA(r) = 

Cr 2 and A(r) = Cr, respectively, where C is an arbitrary constant. 
We obtain that the velocity D is proportional to r -(v-O/k(+). For the self-similar solution it can be seen 

from (1.3) that the w:locity D is proportional to r -0-")lm. In Table 3 we give, for comparison, the exponents 
(1 - n ) / n  and (v - 1)/k(7) for some values of 7. The relative value of the error between the approximate 
and accurate values of the exponent does not exceed 0.0855, i.e. the approximate method encapsulates 
the main feature of the flow. 

Hence, a converg::ng shock wave, in the case of homothermal motion of a gas, reacts primarily to the 
varying geometry of the flow. The other perturbations have a comparatively small effect. 
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Table 3 

Y 

l/n- I 

v = 2  

Ilk l /n - I 

v = 3  

l 2/k 

5/3 0.385 0,366 0,789 0.732 
1.4 0.328 0,309 0.675 0,618 
1.2 0.255 0.240 0.525 0.481 

2. U N S T E A D Y  M O T I O N  OF A P E R F E C T  GAS U N D E R  C O N D I T I O N S  OF 
I N T E N S E  H E A T  E X C H A N G E  W H E N  E N E R G Y  IS S U P P L I E D  IN 

A C C O R D A N C E  W I T H  A P O W E R  LAW 

We will consider an unbounded volume of a stationary perfect gas with constant initial density P0 
and constant pressure P0, to which, beginning at a certain instant of time t = 0, energy is supplied in 
accordance with the law E(t) = E ~ ,  where E(t) is the total amount of energy supplied in the time interval 
[0, t], E0 is a fixed positive number and k = const > 0. The power law of the supply of energy is achieved 
by appropriate motion of a spherical piston expanding from a centre of symmetry, the required 
dependence of  the radius of which on time will be denoted by rp(t), i.e. 

rp(t)l~.o = 0, drp(t)/dt >~ 0 for t > 0 

As a result of this, an intense shock wave propagates through the unperturbed gas. The required 
dependence of the radius of the shock wave on time will be denoted by R(t) (the initial pressurep0 will 
be neglected, i.e. P0 = 0). 

We will assume that the gas flow between the piston and the shock wave is continuous and one- 
dimensional. Since the conditions are homothermal, the temperature T in the region considered depends 
only on time. 

The required functions, namely, the density p(r, t), the radial component of the velocity u(r, t), the 
temperature T(t) and the pressure p(r, t), the radial component of the velocity u(r, t), the temperature 
T(t) and the pressurep(r, t) in the region {(r, t) : t > 0, rp(t) < r < R(t)} satisfy Eqs (1.1) for v = 3, the 
no-flow condition on the piston (for r = rp(t)), and relations (1.2) on the shock wave. 

Note that the homothermal motion of the gas, displaced by the piston, which is expanding in 
accordance with a power law, has been investigated in the case when the law of conservation of energy 
is satisfied over the whole of space and is not satisfied on the shock wave [10]. The motion of the piston 
is such that for any instant of time t the work done by it in the time interval [0; t] is equal to E0~. Then, 
taking the boundary condition on the piston into account, we obtain 

4 x ~  p(rp(x), x)u(rp(x), x)r2(x)dx = Eot k (2.1) 

We will take E ° to be such that E0 = ere °, where the value of ot is chosen so that the dependence of 
the shock-wave radius on time is given by the formula 

R(I) = (E ° l po)~t (2+k)15 

Since the problem is self-similar, the solution will be sought in the form 

rp(t) = kpR(t), u(r, t) = ~2D(t)f(~), p(r, t) = Pog(~) 
(2.2) 

T(t) = 02D2(/) / R0, p(r, t) = P0D2(/)W(~); ~ = r / ( ~ 2 R ( t ) )  

wheref(~),  g(~), ¥ (~)a re  unknown functions, kp and 02 are certain positive constants, and D(t) = R(t) 
is the shock wave propagation velocity. 

Substituting (2.2) into (1.1) we obtain the following system of equations 

/'-- 3-k 
g r~ g "2"+'-k f '  ¥(~)  -- g(~)O2 

where ~ ~ (~ ,  ~ ) ,  ~ = kJx/(02), ~ = 1/~/(02). 

(2.3) 
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On the shock wave (with ~ = ~0) we have relations (1.5). The condition on the piston (with ~ = ~ )  
takes the form 

f(%) = % (2.4) 

Using (2.3) and. (2.4), relation (2.1) can be rewritten in the following form in the new variables 

Hence, it is sufficient to determine the function f(~), which is the solution of the Cauchy problem 
(1.6) with n = (2 + k)/5, v = 3 (problem A) in the section [~e; ~0] (~, ~ 0 satisfies Eq. (2.4)). The function 
g(~) is then given by (1.7) (with n = (2 + k)/5), which solves the problem formulated above uniquely. 

Hence, the problem considered has been reduced to determining the function f, which is the solution 
of  problem A in the range [~; ~] ,  where the positive quantity ~ must satisfy condition (2.4). 

By analysing the integral curve of the differential equation of problem A, it can be shown that for 
any value of the parameter k > 0 and any ? e (1; 5/3], a solution of the problem exists and is unique. 
For these values of the parameter ? the  integral curve emerging from the point (~0, f0) for ~ e [~; ~ ]  
lies in the first quarter in that part of the region ~ - 1 < f < ~ where the right-hand side of the equation 
of  problem A is less than zero. Hence, at any fixed instant of time t the velocity is a monotonically 
decreasing function of the coordinate r. In addition, it can be shown that for any fixed ? in the interval 
considered, at an arbitrary instant of time t 

rp(t, kl) rp(t, k2) 
• ~< for k 2 > k I 

R( t, k! ) R( t, k 2 ) 

The function g(l~) (from (2.3)) satisfies the equation 

g_~' = f [ - 2 ( ~  - f )  + (3 - k)~ / (2 + k)] 

g ~[l-(~-f)~] 

using which we can obtain from (2.2) that for any fixed T e (1; 5/3] with k ~> 3 at an arbitrary fixed instant 
of  time t > 0, the density and the pressure are decreasing functions of the coordinate r, when 0 < k ~< 
(4f0 - ~ ) / ( 3 ~  - ~ ) )  they are increasing functions, and for the remaining values of  k the density and 
pressure reach their highest value inside the flow region between the piston and the shock wave. The 
temperature T of the gas moving behind the shock wave is proportional to t 2(k-3)/5. 

The problem was solved numericaUy with ? = 1.4. In Fig. 3 we show graphs of u(r, t)/D(t) (the continuous curves) 
and p(r, t)/p0 (the dashed curves) as a function of r/R(t) for different values of k. 

% 

0.% ~-----x, 

5 ~- r~,to. 

o. 
o,~ 

6.5 

5.5 

~IR(£) 4,5 
o.g6 o,98 L 

Fig. 3. 
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From the law of conservation of energy we can determine the amount of energy lost in the time interval 
[0; t]: 

fstt,t> ( P u 2 +  P I r2dr  q ( t ' k ) =  E°tk - a T t %  u'k) ~ '-~-  "~ -1 )  

We determine the values of  the following quantities by numerical calculation 

q(t, k) = rp(t) k =  R(t)  gt = 
rt, r ~ '  ro(t ) ' Eo tk 

where ro(t) = (Eo/Po)t/st (2+k)/5 (~  and R are the dimensionless radii of  the piston and the shock wave) 
for some values of  k. The results are given below. 

k 0 1 3 3.154 5 

0.000 0.924 0.796 0.787 0.705 

0.000 0.863 0.751 0.743 0.667 

1.000 0.258 0.008 0.000 -0.633 

It turns out that a value of k. = 3.15408 exists such that when k = k. the gas flow is adiabatic (q(t, 
k°) = 0. When k < k° energy is radiated (q(t, k) > 0) outside the region considered; in the limiting case 
when k ---> 0 the piston will not move, and all the energy supplied to the gas is radiated. When k > k. 
at any instant of  time the energy of the gas will be greater than the total energy supplied to the system 
up to this time. This process is only possible when there is an additional supply of energy from outside 
(q(t, k)  < 0). 

Hence,  the solution of the problem considered previously [4] of  an abrupt point explosion (E(t) = 
E0) is not the limiting solution for the family of  solutions obtained. 
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